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Abstract 

In a mountainous catchment, understanding the interaction between DEM resolution and climatic variables is essential for the 

accurate spatial interpolation of areal mean monthly and annual rainfall and temperature, which is required as an input for further 

applications such as hydrological and hydraulic modeling, agriculture, and environmental conservation. This case study applied the 

geostatistical interpolation technique, kriging with external drift (KED), with a digital elevation model (DEM) with various horizontal 

resolutions, which were used to assess the effects of the DEM horizontal resolutions on the spatial distributions of rainfall and 

temperature by focusing on interpolating the mean monthly and annual rainfall and temperature over a spatially diversified catchment. 

The assessment was undertaken using spatially and temporally complete sampled historical climatic datasets, and consequently, the 

spatial pattern of monthly and annual rainfall (temperature) from east to the west gradually increases or decreases following the DEM 

elevation increment along the same direction. As a result, the finer-resolution DEM (90-m SRTM-DEM) had a considerable impact 

on predicting the mean monthly minimum and maximum temperatures, whereas the resampled 500-m SRTM-DEM performed 

relatively better in mean monthly and annual rainfall and annual minimum temperature estimation values. 
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1. Introduction 

In mountain catchments, climatic variables such as rainfall and temperature play a key role in hydrological 

processes such as runoff, evapotranspiration, and water yield prediction (Chiew, McMahon 2002; Chen et al. 

2020; Kim, Kim 2020). Flood early warning and forecasting as well as drought management for mitigating 

water-related problems significantly rely on the accuracy of predicted spatial rainfall data input (Bertini et al. 

2020; Lu et al. 2020). 

Several scholars have provided basic information on the impacts of the spatial distribution of climatic variable 

input on further hydrological analysis and related problems. However, in developing countries such as 

Ethiopia, the spatial array of input climatic variable stations is sparse, and the density of climatological 

stations is extremely low (Washington et al. 2006; Dinku 2019). Therefore, the spatial interpolation method 

has been used to predict spatial values for unsampled points (Kim et al. 2010; Adhikary et al. 2017; Aydin 

2018). This crucial method helps solve the issue of the sparse and low hydroclimatic network density and is 

https://orcid.org/0000-0003-1885-0487


widely used by governments and other sectors for planning water resource use and management at various 

spatiotemporal scales. 

Spatial interpolation techniques require either ground-based observed climatic input data, radar rainfall, 

remote sensing-based satellite climatic input data, or blended data (Taesombat, Sriwongsitanon 2009; Verdin 

et al. 2015; Cantet 2017; Gebremedhin et al. 2021). The output of spatial interpolation is a map that shows 

the scale of the spatial climatic variable pattern of an area. 

Digital elevation models (DEMs) are the main data commonly used as covariates in spatial interpolation 

techniques, specifically in geostatistics kriging. Several scholars have used topographic variables such as the 

elevation model as an explanatory variable and have confirmed that the covariate has a significant effect on 

the catchment’s hydrological system and water balance (Novikov 1981; Hudson, Wackernagel 1994; Vaze et 

al. 2010; Meena, Nachappa 2019). For instance, the elevation with different spatial resolutions brings a 

valuable change to the catchment’s spatial patterns of both rainfall and temperature (Hudson, Wackernagel 

1994; Taesombat, Sriwongsitanon 2009). Research done by Taesombat and Sriwongsitanon (2009) revealed 

that the interpolation of point rainfall data using GLOBE-DEM (1000 m) and SRTM-DEM (90 m) elevation 

resolution as a predictor resulted in the coarser DEM resolution (GLOBE-DEM) performing slightly better 

in rainfall estimation than the finer one (SRTM-DEM). Vaze et al. (2010) investigated the effects of field 

survey DEM-derived elevation (25-m resolution) with finer-resolution light detection and ranging (LiDAR) 

DEM-derived elevation (1-m resolution) on the values of topographic indices, and the result showed that 

LiDAR DEM is a reasonably good representation of the real ground surface compared to DEMs derived 

from contour maps. Simanek and Holden (2020) suggest that DEM spatial resolution aggregated 

progressively to a coarser resolution, which resulted in decreased runoff and sediment. 

Meena and Nachappa (2019) investigated the impacts of the DEM spatial resolution (12.5, 30, and 90 m) on 

landslide susceptibility mapping through a field survey, and the result depicted that the 30-m resolution is 

better suited for landslide susceptibility mapping. Numerous scholars have investigated the impacts of 

different spatial resolutions of DEM use on hydrological modeling (Schoorl et al. 2000; Wechsler 2007; Lin et 

al. 2010). For example, Lin et al. (2010) examined the effects of different DEM grid size resolutions on 

surface runoff and sedimentation using the SWAT model, and the results indicated that total phosphorous 

(TP) and total nitrogen (TN) decreased substantially with coarser resampled resolutions, whereas the 

predicted runoffs were not sensitive to resampled resolutions. The same result depicted the effect of grid size 

change on both the catchment landscape as well as the hydrological and geomorphic processes (Brown et al. 

1993; Zhang, Montgomery 1994). 

Although the Ethiopian landscape varies from flat to complex mountainous terrain, the impact of elevation 

horizontal resolution on rainfall and related climatological variable spatial distribution at the catchment scale 



is rarely considered and has not been extensively investigated. The studied catchment, Mille, has large 

topographic differences, with highly variable climatic and agro-ecological zones. Based on this, the objective 

of this study is to examine the effect of the DEM resolution on the spatial prediction of the catchment’s areal 

rainfall, maximum temperature, and minimum temperature, as well as to select the better and more reliable 

DEM resolution that serves as an auxiliary variable for future research work for the case of the Mille 

catchment in Ethiopia. 

2. Study area 

The studied catchment is located within the Awash River Basin (AwRB), which is the fourth largest basin in 

terms of area coverage and the seventh-largest basin in terms of surface water potential in Ethiopia (Berhanu 

et al. 2014). The Mille catchment area is nearly 5,599 km2, situated to the east of the longest mountain chain 

of the western Awash River Basin escarpment encompassing the Mille River, which drains to the Awash 

River, between 11°17'-11°76'N latitude and 39°53'-40°94'E longitude. The topography of the Mille catchment 

ranges from steep mountainous terrain in the west to a gentle slope in the middle and undulating plains to the 

east (Fig. 1). The catchment elevations range from 412-755 m and 2,218-3,656 m above sea level for lowland 

plains and mountains, respectively. Land use/land cover is generally cultivated land, shrubland, woodland, 

forestland, grassland, bare land, and water bodies (MoWR 2009). 

 

Fig. 1. Location of the Mille catchment in Ethiopia. 

According to Berhanu et al. (2014), the catchment’s climatic zone falls within five agroclimatic zones of 

Ethiopia, ranging from hot arid (<500 m) in the east to humid (>3,200 m) near the remotest of the upper 

catchment. The annual rainfall pattern is bimodal (Berhanu et al. 2016), with rain occurring between June and 

August (main rainy season) and between March and May (pre-rainy season). Based on long-term historic 



climatic data (2000-2016), the estimated mean annual rainfall varies from approximately 465 mm on the 

easterly catchment to over 1,153 mm on the head of the drain catchment mountains, with a mean rainfall of 

782 mm, and the estimated mean annual maximum and minimum temperatures vary between 29-43°C and 

10-19°C, respectively. 

2.1. Dataset 

2.1.1. Rainfall and temperature data 

The rainfall and temperature datasets used in this study were provided by the Ethiopia National 

Meteorological Agency (ENMA). These datasets encompass mean monthly and annual rainfall and mean 

minimum and maximum temperature, which have completed, reliable, and useful historical samples masked 

from the long-term daily (2000-2016) national-level historic climate grid-based pixel dataset, as shown in 

Figure 2. These daily pixel datasets were blended by the project Enhancing National ClimaTe Services 

(ENACTS) at the national level, using combined satellite-based rainfall estimates and ground-based rainfall 

data for some African countries, such as Ethiopia; their consistency was checked using the double mass curve 

technique. 

 

Fig. 2. Mille catchment in Ethiopia and locations of sampled climate stations. 

2.1.2. Digital elevation model (DEM) data 

The Shuttle Radar Topography Mission (SRTM 3 arc-Second Global) digital elevation model (DEM) data 

were downloaded from NASA (https://urs.earthdata.nasa.gov) and resampled in steps to generate 500-m and 

1,000-m DEMs. Resampling was done using the Resampling Technique parameter, Bilinear in Data 

management tools in ArcGIS. The study site DEM was extracted from each DEM spatial resolution, and 

these DEM resolution data, such as SRTM 90 m, SRTM 500 m, and SRTM 1000 m DEM, were used as a 

covariate in the analysis to investigate whether the spatial resolution of DEM data would have any impact on 

the accuracy of areal climatic variable interpolation. 

https://urs.earthdata.nasa.gov/


The spatial interpolation techniques were carried out by applying R programming used for the interpolation 

technique (Goovaerts 1997a) with the gstat package embedded within R (Pebesma, Wesseling 1998) to 

generate and evaluate the impacts of different resampled DEM spatial resolutions on climatological variable 

spatial prediction. The GIS tools (ArcGIS and QGIS) were used for processing DEM and preparing 

shapefiles. 

2.2. Methods 

Among the spatial interpolation techniques known as kriging (Matheron, Hasofer 1989), the geostatistical 

technique is considered the best unbiased linear predictor (BULP) for input data that satisfy the conditions of 

normality as the data are not skewed in any way (Isaaks, Srivastava 1994). However, climate data are often not 

symmetrical (skewness either to the right or to the left), which affects the spatial prediction of climate 

variables such as rainfall and temperature in that the few high values will overcome all the others. In 

experimental variogram prediction (Goovaerts 1997), nonsymmetric distributions are often transformed to 

conditions of normality using the natural logarithmic function and/or square root distance from the 

ocean/sea to minimize the skewness of input climate data and the influence of extreme values before 

variogram analysis and spatial interpolation (Goovaerts 1997). However, for small sampled data, such as our 

case, this can result in overprediction as well as empirical variograms that are difficult to model (Rossiter 

2014). Therefore, the transformation was not applied because of the highly sparsely distributed climate data 

(see Fig. 2). 

According to Goovaerts (1997), primary attributes of interest are usually accompanied by independent 

secondary information (auxiliary) that originates from continuous or random attributes, and the estimation 

generally improves when this information is taken into consideration, particularly in areas where the data are 

highly sparse or poorly correlated in space. Based on relevant literature reviews (e.g., Cantet 2017; Rata et al. 

2020) and due to its high performance (in most cases) compared to other interpolation methods, kriging with 

external drift (KED) was selected to assess the effects of the catchment DEM spatial resolution on the spatial 

prediction of climatic variables. The methodological framework approaches used in this research article for 

the geostatistical interpolation technique were developed as follows (Fig. 3). 



 

Fig. 3. Schematic flowchart showing the estimation of spatial climatic variables. 

2.2.1. Experimental Variogram 

Of the sampled data, z(x1), z(x2) … z(xn), where x1, x2, …, xn represent the positions of the sampled in two-

dimensional space, one can estimate both cloud and experimental variograms assuming those sampled data 

were unbiased. 

The equation to compute the variogram is Matheron’s method of moments (MoM) estimator (Oliver, 

Webster 2015): 

𝛾(ℎ)  =  
1

2𝑁(ℎ)
∑ {𝑧(𝑥𝑖)  −  𝑧(𝑥𝑖  +  ℎ)}2𝑁(ℎ)

𝑖 , (1) 

where 𝛾(ℎ) is the experimental variogram, which equals one-half the squared difference between points 

separated by a distance xi ± (xi + h) (assuming no direction preference), z(xi) and z(xi + h) are the 

observed values of sampled data z at places xi and xi + h, and N(h) = 
𝑁(𝑁 − 1)

2
 is the number of paired values 

at lag h. 

There are some methods to fit a variogram model to an experimental/empirical variogram, and this paper 

uses the exponential and spherical model (Eqs. 2 and 3) via a simple method called "automatic fitting 

variogram from the package automap. 



𝛾(ℎ) = {
𝑐0 +𝑐{1 − 𝑒𝑥𝑝(−

ℎ

𝑎
)}, 𝑓𝑜𝑟 0 < ℎ

0          𝑓𝑜𝑟 ℎ = 0                                 
 (2) 

where c0 is a nugget, c is the sill of variance, h is the lag, and a is the practical range. 

𝛾(ℎ) = {
𝑐0 + 𝑐 [

3ℎ

2𝑎
−  

1

2
(

ℎ

𝑎
)

3
]  𝑓𝑜𝑟 0 < ℎ ≤ 𝑎

𝑐0 + 𝑐                                         𝑓𝑜𝑟 ℎ > 𝑎
0                                                   𝑓𝑜𝑟 ℎ = 0

 (3) 

2.2.2. Kriging with an external drift 

Kriging with an external drift (KED)1 is a widely applied geostatistics interpolation method that considers 

auxiliary variables as external or secondary variables in the estimation of a primary attribute (Goovaerts 1997). 

In KED, a linear weighted average from the N known points with the value Zi  is used to estimate the value 

at each unknown point Zo by using both the trend and local deviations (Rossiter 2019). The KED estimator is 

as follows: 

�̂�𝐾𝐸𝐷(𝑋0) = ∑ 𝜆𝑖
𝐾𝐸𝐷𝑍(𝑋𝑖 

𝑛
𝑖=1 ) (4) 

Its expectation is as follows: 

𝐸[�̂�𝐾𝐸𝐷(𝑋0)] =∑ ∑ 𝛽𝑘
𝑛
𝑖=1 𝜆𝑖

𝐾𝐸𝐷(𝑋𝑖)𝐾       
𝑘=0  (5) 

The estimator is unbiased if: 

∑ 𝜆𝑖
𝐾𝐸𝐷𝑌𝑘(𝑋𝑖

𝑛
𝑖=1 )  =  𝑌𝑘(𝑋0) (6) 

2.3. Evaluation criteria for prediction performance 

To evaluate the prediction accuracy, the measured data were compared with the estimated values in the same 

locations. The available data are usually split into two parts, namely the training and testing datasets. The 

training data were used to fit the model, whereas the testing dataset or validation dataset was used to validate 

prediction accuracy by estimating the prediction error. This procedure is called cross-validation, and they vary 

in type (Voltz, Webster 1990; Khorsandi et al. 2012). In this study, the author used the leave-one-out-cross-

validation (LOOCV) type 1 because of the small observed dataset. In this method, the model was developed 

based on N – 1 observations and tested on the remaining observations. Next, this process was repeated for 

each observation in the dataset, and the average error for all trials was calculated. 

 
1 Confusingly, termed ‘Universal Kriging’ in gstat. 



The predicted and measured datasets were compared by computing three statistical indices and graphically 

presenting the N sites belonging to the validation dataset. 

Statistical indices: 

The root mean square error (RMSE ) measures the precision of the predictions and should be as small as 

possible. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑍 ̂𝑛

𝑖=1 (𝑋𝑖) − 𝑍(𝑋𝑖))^2 (7) 

The mean biased error (MBE ) measures the bias of prediction and should be close to zero for unbiased 

methods. 

𝑀𝐵𝐸 =
1

𝑛
∑ [𝑍(𝑋𝑖)𝑛

𝑖=1 − 𝑍 ̂(𝑋𝑖)] (8) 

The coefficient of correlation (r) measures the strength of the relationship between the predicted and 

observed datasets. The value ranges between –1.0 and +1.0, and the equation is as follows: 

𝑟 =
∑ 𝑍(𝑋𝑖)∗�̂�(𝑋𝑖)𝑛

𝑖=1 −(∑ 𝑍(𝑋𝑖))(∑ 𝑍(𝑋𝑖))𝑛
𝑖=1

𝑛
𝑖=1

√𝑛(∑ (𝑍(𝑋𝑖))2)−(∑ 𝑍(𝑋𝑖))^2  𝑛
𝑖=1

𝑛
𝑖=1  √𝑛(∑ (�̂�(𝑋𝑖))2)−(𝑛

𝑖=1 ∑ 𝑍(𝑋𝑖))𝑛
𝑖=1

2
 
, (9) 

where z(𝑥𝑖) is the measured value at 𝑥𝑖, and �̂�(𝑥𝑖) is the predicted value. 

3. Results 

3.1. Effects of DEM spatial resolution on rainfall spatial prediction 

The DEM elevations with various resolutions generated from the SRTM DEM covering the study area were 

between 490 and 2,088 m, 490.1 and 2,088.4 m, and 488.5 and 2,125.7 m above sea level (Table 1 and Fig. 4). 

Table 1. Elevation values for the nine sampled climatic stations. 

Stations name 
DEM's Elevation (m.a.s.l.) 

SRTM 90-m DEM Resampled 500-m DEM Resampled 1,000-m DEM 

X055 2,088.0 2,088.4 2,125.7 

X058 1,853.0 1,835.5 1,864.6 

X059 1,574.0 1,566.0 1,559.0 

Weranso 643.0 647.1 646.8 

Waama 1,020.0 1,020.0 1,022.1 

Mille (AVA) 490.0 490.1 488.5 

Haik 2,003.0 1,996.9 2,012.8 

Chifra 928.0 927.1 924.6 

Bokeksa 1,768.0 1,733.3 1,747.2 



 

Fig. 4. Box plots of the descriptive statistical values of the elevations for nine sampled climatic stations. 

Table 1 shows that the maximum elevation value increased from 2,088 to 2,125.7 with coarsening DEM 

resolutions, and the minimum elevation value decreased from 490 to 488.5 as the DEM coarsened from 90 to 

1,000 m. This may be due to the loss of detailed topographic attributes at coarser resolution (Zhang et al. 

2014; Reddy 2015). 

The spatial pattern mapped for mean monthly and annual rainfall was detailed with less error at the 500-m 

DEM resolution and the 90-m resolution than at the 1,000-m DEM resolution (Fig. 5 and Table 2). Based on 

the performance of the predicted rainfall values depicted in Table 2, the monthly rainfall data at each point 

were removed, and the remaining point input data were used to estimate the missing data by using the 

LOOCV procedure. Taking the rainy season (June, July, and August) into consideration, the KED technique 

with 500-m DEM as a covariate produced relatively smaller (larger in r) values of RMSE and MBE than the 

KED techniques with 90-m and 1,000-m DEM as a covariate for the spatial prediction of catchment rainfall 

both at monthly and annual temporal scales, respectively.  

On the other hand, the rainfall spatial distribution in two months, such as December and February, was less 

correlated with an auxiliary variable (elevation) and its resolution. Surprisingly, January’s monthly spatial 

rainfall distribution was exceptional and was less negatively correlated with elevation itself and its resolution. 

The reasons were that supplements to local factors (e.g., topography), the spatial rainfall patterns were 

affected by different global and regional factors, such as the Inter-Tropical Convergence Zone (ITCZ), 

Tropical Easterlies, interseasonal variation, and latitudinal locations (Dawit 2010; Melesse et al. 2014). The 

results indicate that the KED with the 500-m DEM as a covariate was the most suitable for mean monthly 

and annual areal rainfall estimation compared to the other DEM resolutions. 



In general, the point rainfall depths vary with spatial and temporal scales and tend to increase with increasing 

elevations because of the orographic effect, which results in a lifting of air vertically and forms clouds due to 

the adiabatic cooling effect. 

 

Fig. 5. July and August mean monthly rainfall map for 17 years at (A) 500-m DEM resolution, (B) 1,000-m DEM 

resolution, and (C) 90-m DEM resolution using KED. 

 



Table 2. Statistical evaluation of the impact of DEM resolution on spatial rainfall prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

NB: Ro = observed mean rainfall (mm), Re = estimated mean rainfall (mm). 

 

 

Month Ro 
90-m DEM and evaluation criteria 500-m DEM and evaluation criteria 1,000-m DEM and evaluation criteria 

Re RMSE MBE r Re RMSE MBE r Re RMSE MBE r 

Jan 11.42 11.79 5.72 –0.36 –0.015 11.82 5.77 –0.39 –0.047 11.83 5.81 –0.4 –0.067 

Feb 6.799 6.752 3.17 0.05 0.570 6.748 3.14 0.05 0.578 6.758 3.16 0.04 0.572 

Mar 37.92 38.33 9.05 –0.41 0.856 38.32 9.00 –0.41 0.858 38.36 9.27 –0.45 0.848 

Apr 57.64 58.13 9.91 –0.49 0.863 58.15 10.00 –0.51 0.860 58.19 10.33 –0.55 0.850 

May 43.40 43.95 9.26 –0.56 0.838 43.96 9.32 –0.57 0.835 44.01 9.63 –0.61 0.824 

Jun 16.49 16.617 4.35 –0.13 0.878 16.616 4.32 –0.13 0.880 16.638 4.44 –0.15 0.873 

Jul 192.76 194.87 35.96 –2.11 0.891 194.86 35.64 –2.10 0.893 194.92 36.08 –2.16 0.890 

Aug 216.06 218.1 34.81 –2.05 0.878 218.1 34.24 –2.03 0.882 218.2 35.09 –2.13 0.875 

Sep 64.03 64.69 13.45 –0.67 0.871 64.73 13.68 –0.70 0.866 64.79 14.12 –0.76 0.857 

Oct 24.16 24.64 7.39 –0.48 0.746 24.66 7.46 –0.50 0.741 24.68 7.60 –0.52 0.730 

Nov 16.08 16.25 2.76 –0.17 0.849 16.25 2.75 –0.17 0.851 16.26 2.81 –0.17 0.844 

Dec 12.00 12.232 4.71 –0.24 0.500 12.243 4.74 –0.25 0.490 12.253 4.80 –0.26 0.475 

Annual 698.8 706.4 123.96 –7.64 0.884 706.8 122.65 –7.52 0.894 706.8 127.35 –8.08 0.877 



3.2. Effects of DEM resolution on the spatial pattern of temperature 

The spatial map of maximum temperature produced by KED using various DEM resolutions as a 

covariate showed more gradual and smoothing changes, with a regular distribution in the middle to 

the lower parts of the catchment. At the uppermost and escarpment parts of the catchment, the 

spatial map appeared irregularly distributed and with discontinuous borders, showing an abrupt 

change in spatial distribution (Fig. 6A-C). 

Tables 3 and 4 show that the spatially predicted mean maximum and minimum temperature values 

were similar to the analyzed predicted rainfall in that they were significantly influenced by the DEM 

but less influenced by the DEM’s horizontal resolution. Based on the statistical evaluation of three 

DEM resolutions in terms of RMSE, MBE, and r of the KED technique, the 90-m DEM resolution 

depicted the lowest error (highest r value) relative to the remaining DEM resolutions on maximum 

and minimum temperatures. As depicted in Figure 6A-C, the spatial pattern of maximum 

temperature gradually increases from west to the east following the elevation, which decreases 

progressively from west to east. Thus, based on the visual inspection of expert knowledge and 

statistical evaluations, it can be concluded that the spatial distributions of the mean minimum and 

maximum temperatures were presented in better detail at a 90-m DEM resolution than at the other 

DEM resolutions. 



 

Fig. 6. May and June mean monthly maximum temperature map for 17 years at (A) SRTM 90-m DEM resolution, (B) SRTM 1,000-m 

DEM resolution, and (C) SRTM 500-m DEM resolution using KED. 



Table 3. Mean monthly and annual maximum values observed and estimated temperature (°C) and covariates. 

 

NB: – (Tmax)o – observed mean maximum temperature, (Tmax)e – estimated mean maximum temperature. 

  

Month (Tmax)o 
SRTM 90-m DEM and evaluation criteria SRTM 500-m DEM and evaluation criteria SRTM 1,000-m DEM and evaluation criteria 

(Tmax)e RMSE MBE r (Tmax)e RMSE MBE r (Tmax)e RMSE MBE r 

Jan 31.62 31.71 1.73 –0.09 0.897 31.70 1.77 –0.08 0.892 31.70 1.76 –0.07 0.893 

Feb 33.47 31.71 0.68 0.02 0.984 33.45 0.73 0.02 0.981 33.45 0.76 0.03 0.980 

Mar 36.06 36.11 1.69 –0.05 0.938 36.10 1.74 –0.04 0.935 36.10 1.71 –0.03 0.936 

Apr 36.69 36.77 1.45 –0.08 0.966 36.76 1.52 –0.07 0.963 36.75 1.50 –0.07 0.964 

May 37.36 37.38 0.90 –0.02 0.985 37.38 0.97 –0.02 0.983 37.37 0.98 –0.01 0.982 

Jun 39.01 39.08 1.89 –0.07 0.941 39.07 1.97 –0.05 0.935 39.05 1.97 –0.04 0.935 

Jul 38.86 38.99 2.20 –0.14 0.933 38.99 2.27 –0.13 0.929 38.98 2.27 –0.12 0.929 

Aug 35.77 35.85 1.43 –0.08 0.974 35.84 1.49 –0.07 0.972 35.84 1.47 –0.06 0.973 

Sep 34.38 34.32 1.64 0.06 0.960 34.31 1.68 0.06 0.958 34.31 1.70 0.07 0.957 

Oct 34.33 34.36 1.16 –0.03 0.979 34.36 1.23 –0.03 0.976 34.35 1.24 –0.02 0.975 

Nov 33.04 33.18 2.14 –0.14 0.916 33.17 2.20 –0.13 0.912 33.16 2.16 –0.12 0.914 

Dec 30.42 30.43 0.62 –0.02 0.987 30.43 0.67 –0.02 0.985 30.43 0.68 –0.01 0.985 

Annual 35.08 35.13 1.17 –0.05 0.974 35.13 1.23 –0.05 0.971 35.12 1.22 –0.04 0.971 



Table 4. Mean monthly and annual minimum values observed and estimated temperature (°C) and covariates. 

 

NB: – (Tmin)o – observed mean minimum temperature, (Tmin)e – estimated mean minimum temperature. 

 

Month (Tmin)o 
SRTM 90-m DEM and evaluation criteria SRTM 500-m DEM and evaluation criteria SRTM 1,000-m DEM and evaluation criteria 

(Tmin)e RMSE MBE r (Tmin)e RMSE MBE r (Tmin)e RMSE MBE r 

Jan 11.63 11.569 0.88 0.06 0.945 11.569 0.86 0.06 0.947 11.567 0.88 0.06 0.945 

Feb 12.46 12.381 1.10 0.08 0.941 12.381 1.09 0.08 0.942 12.379 1.12 0.08 0.939 

Mar 14.00 13.930 0.98 0.06 0.951 13.910 1.00 0.07 0.948 13.890 1.02 0.07 0.946 

Apr 15.64 15.580 0.89 0.06 0.965 15.580 0.92 0.06 0.962 15.570 0.94 0.06 0.960 

May 16.71 16.630 0.97 0.06 0.968 16.640 0.97 0.07 0.968 16.620 1.01 0.07 0.966 

Jun 17.68 17.600 1.17 0.08 0.966 17.600 1.18 0.08 0.965 17.610 1.22 0.08 0.963 

Jul 17.47 17.410 0.95 0.06 0.969 17.410 1.00 0.07 0.966 17.400 1.02 0.07 0.965 

Aug 16.41 16.340 1.09 0.07 0.950 16.330 1.12 0.07 0.947 16.330 1.14 0.08 0.945 

Sep 16.00 15.920 1.23 0.08 0.950 15.920 1.24 0.08 0.948 15.910 1.28 0.08 0.946 

Oct 13.24 13.165 1.07 0.08 0.958 13.166 1.06 0.07 0.960 13.163 1.09 0.08 0.957 

Nov 11.49 11.404 1.40 0.09 0.909 11.404 1.37 0.09 0.913 11.402 1.38 0.09 0.911 

Dec 10.71 10.641 1.04 0.07 0.936 10.641 1.01 0.07 0.939 10.640 1.02 0.07 0.937 

Annual 14.46 14.389 1.03 0.07 0.956 14.390 1.02 0.07 0.957 14.388 1.04 0.07 0.955 



4. Discussion 

As illustrated in Figures 7A and B, the relationships between the mean annual rainfall and the mean 

maximum annual temperature of each sampled climatic station between 2000 and 2016 and its elevation were 

plotted. The mean annual rainfall and mean maximum annual temperatures tended to increase/decrease with 

increasing observed elevations, with coefficients of determination of 0.86 and 0.97, respectively. However, the 

spatial resolution among the three DEMs had no significant effect on the spatial prediction of climatic 

variables (see Tables 2 and 3). The analysis indicates that the most important characteristics, such as the mean 

annual and mean monthly climatological variables, rainfall and temperature, were significantly correlated with 

DEM elevation but less correlated with DEM resolution. 

 

Fig. 7. Correlation diagram of annual mean predicted rainfall (A) and mean maximum predicted temperature (B) with 

elevation. 

The predicted minimum and maximum temperatures were interpolated and extrapolated by KED to 

unsampled regions with a well-performing horizontal resolution DEM as a covariate (Figs. 8A, B). As seen in 

the developed maps, the highest amounts of spatial temperature were distributed in the catchment at the 

lowest elevations, which confirms that the spatial distribution of mean temperature is linearly correlated with 

the selected DEM (see Tables 3 and 4). 



 

Fig. 8. Spatial map of the mean minimum and maximum annual temperatures with 90-m elevation as external drift, using 

the sampled stations. 

The primary novelty of the study resides in the evaluation and selection of DEM with the spatial resolution 

which shows relatively good performance in the prediction of the spatial distribution of climatological 

variables based on cross-validation techniques and, to some extent, expert knowledge. According to the 

proposed techniques, selecting covariates slightly improves the predictive performance of KED. For instance, 

the mean annual rainfall predicted using elevation with spatial resolutions of 500 and 90 m showed a slightly 

good performance (RMSE = 122.65, MBE = –7.52, r = 0.89, and RMSE = 123.96, MBE = –7.64, r = 0.88) r 

compared to the 1,000-m resolution DEM (RMSE = 127.35, MBE = –8.08, r = 0.877). 

The proposed procedure achieved good performance regarding the prediction of mean minimum and 

maximum annual and monthly temperature with elevation but showed lower performance on the prediction 

of both mean monthly and annual temperature with various DEM resolutions. Similar to a previous study 

(Taesombat, Sriwongsitanon 2009), the optimum coarser DEM (500-m SRTM-DEM) resolution seemed to 

outperform both the mean monthly and annual rainfall estimations compared to the finer DEM (90-m 

SRTM-DEM) and coarser (1,000-m SRTM-DEM) resolutions, whereas the fine resolution (90-m SRTM-

DEM) showed relatively less error in the mean monthly minimum and maximum temperature estimations 



than the remaining two DEM resolutions. This approach seems to be a great opportunity to perform and 

select the more advanced horizontal resolution of DEM, which is used as a predictor for geostatistical 

interpolation techniques in mountainous catchments with overly sparse and unrepresentative observational 

climatic data. 

5. Conclusions 

This study compared and examined the impacts of three DEM resolutions (SRTM 90-m DEM, SRTM 500-m 

DEM, and SRTM 1,000-m DEM) on the spatial prediction of rainfall and temperature in a topographic 

complex catchment by using the KED interpolation technique. Three different DEM resolutions were tested 

on a 5599-km2 catchment. The minimum and maximum elevations in the catchment varied substantially due 

to DEM resolutions (see Table 1), and the results indicated that changes in DEM resolution somehow 

influenced the outcomes of the prediction performance for both rainfall and temperature. In general, there 

were two different effects of DEM resolution. The first was the overestimation of mean monthly and annual 

rainfall and maximum temperature, and the second was the underestimation of mean monthly and annual 

minimum temperature. The LOOCV procedure infers that for mean monthly and annual rainfall, the coarser 

DEM resolution (500-m SRTM-DEM) performed better in spatial prediction with less error, whereas for 

mean maximum and minimum temperature spatial estimation, the finer DEM resolution (SRTM 90-m DEM) 

performed slightly better than the remaining DEM spatial resolution. This type of interpolation technique 

plays a fundamental role in various applications by assessing the effects of climate on hydrology, the 

environment, agricultural activities, and water resource development. Overall, the findings in this paper 

confirm that, as the DEM resolutions vary, the impact on the spatial prediction of the climatic variable is less 

significant. However, a substantial difference in resolution brings a small elevation change (vertical height), 

and this may affect hydrologically important topographic attributes calculated from DEM, such as slope, 

aspects, and drainage networks, specifically in mountainous catchments (Wilson et al. 1998). There are 

important implications for those interested in using spatially distributed topographic attributes for further 

applications (Moore et al. 1991; Brown et al. 1993; Lin et al. 2010). Therefore, it is recommended to consider 

further application uses, specifically in mountainous catchments.  
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